
A Divide and Conquer Direct Differentiation Approach for
Multibody System Sensitivity Analysis

This manuscript is without final correction - for corrected manuscript refer:
www.springerlink.com/content/ah025763j4674851

Rudranarayan M. Mukherjee, Kishor D. Bhalerao and Kurt S. Anderson
Department of Mechanical, Aeronautical, and Nuclear Engineering

Rensselaer Polytechnic Institute
Troy NY 12180

email: mukher@rpi.edu bhalek@rpi.edu anderk5@rpi.edu

Abstract

In the design and analysis of multibody dynamics systems, sensitivity analysis is a critical tool for good
design decisions. Traditional Direct Differentiation methods can be computationally expensive with com-
plexity as large as O(n4 +n2m2 +nm3) where n is the the number of generalized coordinates in the system
and m is the number of algebraic constraints. In this paper, a Divide and Conquer approach is presented for
efficient sensitivity analysis of multibody systems with general topologies. This method requires minimal
data storage. This approach uses a binary tree structure to traverse the topology of the system and recursively
generate the sensitivity data in O(n) and O(log(n)) complexity for serial and parallel implementation. The
constraints (in constrained systems) are enforced at the acceleration level. This approach is a good alternative
to existing methodologies as it is fairly simple to implement for general topologies and is computationally
efficient.

1 Introduction
Multibody design is an iterative process and computationally taxing. Sensitivity analysis is a useful tool which
significantly reduces the iterative nature of design by helping make intelligent guesses for the design parame-
ters. However determining sensitivity terms is a non-trivial task given the complexity of governing equations of
motions for the simplest of multibody systems. Consequently sensitivity analysis continues to be an important
thrust area.

Finite difference approximations for sensitivity analysis though easy straight forward and easy to implement
suffers from a number of difficulties. These include the methods sensitivity to parameter perturbation size and
system stiffness [1],[3]. Analytical methods such as adjoint variable method [4]-[5], direct differentiation [6]--
-[9] and automatic differentiation do not suffer from the problems faced by the numerical methods.

With the adjoint variable method, a set of adjoint equations is introduced to represent the variations of
the state. The advantage of using these methods is explicit calculation of sensitivity terms is avoided. The
number of equations are roughly proportional to the number of objective functions. This is desirable when
the number of design variables is large as compared to the objective functions. However the implementation
of these methods is complex and a large amount of data has to be stored for the forward problem. The large
number of I/O operations slows down the speed significantly [6],[10]. Another source of error is backward
temporal integration necessary for calculation of adjoint variables. The adaptive nature of integrators calls for
interpolation to obtain all values at matching time steps. Besides this, numerical stability for adjoint variable
methods remains an open question [4],[11].

Direct differentiation methods are conceptually easiest to understand. They systematically applies the chain
rule of differentiation to obtain analytical expressions for sensitivity terms. The number of integrated equations

1



is roughly equal to the number of state variables plus design variables. The major advantage of these meth-
ods is higher numerical stability and relative insensitivity of solution accuracy to parameter perturbations.
Implementation approaches for direct differentiation vary with different formulations of equations of motion.
Newton-Euler is the most frequently used method [6]-[9]-[12]. Although the formulation of sensitivity equa-
tions is straight forward, the resultant is a set of computationally demanding differential algebraic equations.
Consequently, the cost of computation of sensitivity terms depends upon the algorithm used for solving the
equations of motion.

The analytical methods described above are all capable of calculating the sensitivity derivatives. However
the costs involved in each method can vary greatly. For example in a system with g design variables and m
independent algebraic constraint equations, the adjoint variable method produces a smaller system of (n+m+g)
differential algebraic equations, whereas the direct differentiation counterpart involves (n+m)(g+1) differential
algebraic equations (DAE). [13] gives a O(n+m) direct differentiation algorithm for a multibody system with n
generalized coordinates and m independent algebraic constraints for sensitivity analysis.

In this paper, a Divide and Conquer direct differentiation approach is presented for efficient sensitivity
analysis of multibody systems with general topologies. This method requires minimal data storage as com-
pared to adjoint variable methods that require storing the states of the system at every temporal integration
step of the simulation. This approach uses a binary tree structure to traverse the topology of the system and
generate the sensitivity data in O(n) and O(log(n)) complexity for serial and parallel implementation respec-
tively. The sensitivity data is accurate to integration error making this approach a good alternative to existing
methodologies as it is fairly simple to implement for general topologies and is computationally efficient. The
methodology presented here is a derived work from the (i) divide and conquer algorithm [14] and (ii) the
orthogonal complement based divide and conquer algorithm [15].

2 Sensitivity Problem Formulations
The objective of sensitivity analysis is to quantify the sensitivity of a desired objective function to the change
in certain design or control variable value. This information is useful to identify the robustness of a design as
well as tolerances on system performance with respect to variations in design variable values. For multibody
dynamics systems the objective function J is often an explicit function of design variable(s) p as well as state
variables q,u. The state variables may also be explicit functions of the design variable(s). Further, the depen-
dency of the state variables on the design variable(s) is coupled between all the state variables of the system.
Thus, the sensitivity equation of the objective function J with respect to design variable p can be written as

∇J =
∂J

∂p
+

n∑
r=1

(
∂J

∂qr

dqr
dpj

+
∂J

∂ur

dur
dpj

+
∂J

∂u̇r

du̇r
dpj

) (1)

It is clear from the above equation that the sensitivity analysis requires the generation of the dependencies
of the state and state derivatives on the design variable(s). Generating this dependency information can be
computationally expensive since the state and state derivative variables are highly coupled for a multibody
system. This expense is alleviated somewhat as there exists the following relations

dqr
dpj

∣∣∣∣
t=τ+dt

=
∫ t=τ+dt

t=τ

dq̇r
dpj

∣∣∣∣
t=τ

dt+
dqr
dpj

∣∣∣∣
t=τ

(2)

dur
dpj

∣∣∣∣
t=τ+dt

=
∫ t=τ+dt

t=τ

du̇r
dpj

∣∣∣∣
t=τ

dt+
dur
dpj

∣∣∣∣
t=τ

(3)

Thus, the task reduces to that of finding du̇r/dpj at every instant in the simulation and substituting it back
into the above relations to generate the other terms. Now, in the state space form, the equations of motion of a
general multibody system reduces to

Mn×nu̇n×1 = Kn×1 (4)

The above present a coupled set of n equations where n is the number of degrees of freedom of the system,
M is the populated mass matrix, u̇ is the column matrix of the unknown time derivatives of generalized speeds

2



and K is the column matrix of the forces on the system including state dependent inertia forces. Using a direct
approach, the above equations can be differentiated to generate the desired u̇ values as

dMu̇

dpj
=

dK
dpj

(5)

⇒ [Mn×n]
du̇

dpj n×1

=
∂K
∂pj

+
∂K
∂q

dq

dpj
+
∂K
∂u

du

dpj
− [

∂M
∂pj

+
∂M
∂q

dq

dpj
+
∂M
∂u

du

dpj
]u̇ (6)

The direct method incurs large computational expense associated with the differentiations O(n2) − O(n3)
and the decomposition of the n coupled equations at O(n3) complexity for direct methods. For even small
values of n, this cost can become prohibitive. Unless some efficient method is introduces to reduce the cost,
generating sensitivity information for multibody systems can quickly become the bottle neck in the design
analysis process.

3 Analytical Preliminaries
Consider an articulated multibody system of rigid bodies connected together by kinematic joints. Consider
two representative bodies Body k and Body k + 1 of the articulated body system as shown in figure (1). Let
the Body k be connected to its parent and child bodies through the joints Jk1 and Jk2 where the parent body is
Body k − 1 and the child body is Body k + 1 . Similarly, the two joints on Body k + 1 are joints Jk+1

1 and
Jk+1

2 . These joints allow relative motion between bodies through the joint degrees of freedom as well as the
transmission of constraint forces through the constrained degrees of freedom. In the absence of a kinematic
joint, two bodies can move with respect to each other through 6 degrees of freedom. So the motion map
between the bodies is a rank 6 matrix. A kinematic joint constraints the relative motion between two bodies,
allowing only certain degrees of freedom (dof) while constraining out the remain. Thus the kinematic joint
partitions the 6 dimensional relative motion map between two bodies into the joint motion map H which is of
dimension 6 × dof and its orthogonal complement D of dimension 6 × (6 − dof ). The joint allows relative
motion in the space spanned by the columns of the joint motion map H . The joint cannot support a constraint
load in the space spanned by H . However, the constrained degrees of freedom are mapped by the columns of
D and the joint can support constraint loads in the space spanned byD. For example, with a spherical joint, the
translational degrees of motion are constrained while the rotational degrees of freedom are maintained. Hence
the corresponding maps maybe given by

Hk/(k+1) =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

 Dk/(k+1) =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 (7)

From a linear algebra point of view, the joint motion map H can also be interpreted as the 6 × dof matrix that
maps the dof generalized speeds u at the joint into a 6 × 1 column matrix of spatial relative velocity at the
joint.

It is apparent from their definitions, the orthogonal complementDk/(k+1) and the joint motion mapHk/(k+1)

of any representative kinematic joint between two representative bodies k and k + 1, satisfy the following or-
thogonality relation

Hk/(k+1)T ·Dk/(k+1) = Dk/(k+1)T ·Hk/(k+1) = 0 (8)

Although for the discussion presented here each body is assumed to have only two joints, the discussion
can be easily extended to bodies with an arbitrary number of joints. Each body possess its own mass and
inertia properties, with vectors from the body’s center of mass to the joint locations which include geometric
constants such as lengths. The relative position and orientation of bodies is modelled through the use of

3



1

2

2

1

1

1

2

2

Figure 1: Representative bodies of a multibody system

generalized coordinates q and the kinematics expressed in terms of generalized speeds u and time derivatives
of the generalized speeds i.e. u̇. The generalized speeds characterized the motion of the systems and are
comprised of an invertible linear combination of the time derivatives of the generalized coordinates i.e.

u = Aq̇ +B Where A−1 exists (9)

In the analytical treatment presented here, direction cosine matrices and transformation between different
basis are not shown explicitly. Appropriate basis transformations have to be taken into account for an imple-
mentation of this algorithm. Also, this algorithm uses a redundant mixed set of coordinates, viz. Cartesian
coordinates and relative coordinates, throughout the derivation. The mixed set of coordinates offer certain
advantages within this formulation and have been used in [16]-[17] for rigid body dynamics.

In the most general form, the equations of motion of each body using a spatial Newton-Euler formulation
can be expressed as

Mk
0Ak0 = Fk0 (10)

where Mk
0 =

[
Ik0 0
0 mk

]
while Ak0 =

[
αk0
ak0

]
and Fk0 =

[
τk0
fk0

]
(11)

In the above, the subscript 0 denotes the center of mass of the body, while superscript k indicates that the
quantity is associated with representative body k. The total spatial load acting at the center of mass consists
of state dependent active loads such as actuators, loads from potential fields as well as constraint forces arising
from the joints. These constraint forces depend on the dynamics of the entire system and hence introduce
coupling between the equations of motion of all bodies in the system. The active forces on the other hand are
uncoupled and can be calculated independently on each body based on the state of the system. Thus, above
equation(8) can be written withFk0 expressed explicitly in terms of the known active loadsFka and the unknown
constraint loads arising from joints Jk1 and Jk2 as Fk1 and Fk2 as

Mk
0Ak0 = Sk0/k1Fk1 + Sk0/k2Fk2 + Fka (12)

And Sk0/k1 =
[
U (rk0/k1)×
0 U

]
Sk0/k2 =

[
U (rk0/k2)×
0 U

]
(13)

From the above equations, the expressions for spatial accelerations at the two joints can be expressed as

Ak1 = ζk11Fk1 + ζk12Fk2 + ζk13 (14)
Ak2 = ζk21Fk1 + ζk22Fk2 + ζk23 (15)

4



In the above, the matrices ζk11 and ζk22 are Symmetric Positive Definite (SPD) and the matrices ζk12 and ζk21 are
symmetric transposes of each other. The matrices ζk13 and ζk23 include the terms that are state dependent (for
e.g. the active forces) and can be calculated independently on each body. Similar expressions for body k + 1
can be written as

Ak+1
1 = ζk+1

11 F
k+1
1 + ζk+1

12 F
k+1
2 + ζk+1

13 (16)
Ak+1

2 = ζk+1
21 F

k+1
1 + ζk+1

22 F
k+1
2 + ζk+1

23 (17)

Let pj represent any design variable with respect to which the sensitivity of the dynamic system is to be
calculated. For a dynamic system, pj may be a mass or inertia value, geometric constant such as lengths, radii,
or active forces among others. Differentiating equations(14-15) with respect to pj , the following equations are
arrived at.

dAk1
dpj

=
dζk11
dpj
Fk1 + ζk11

dFk1
dpj

+
dζk12
dpj
Fk2 + ζk12

dFk2
dpj

+
dζk13
dpj

(18)

dAk2
dpj

=
dζk21
dpj
Fk1 + ζk21

dFk1
dpj

+
dζk22
dpj
Fk2 + ζk22

dFk2
dpj

+
dζk23
dpj

(19)

With
d(Mk

0)−1

dpj
= −(Mk

0)−1 dMk
0

dpj
(Mk

0)−1 (20)

In the above equations, the terms dζkij/dpj can be easily obtained from d(Mk
0)/dpj and dSk0/ki/dpj

locally on each body as there is no coupling in these terms from other bodies in the system. These terms are
zero when pj is a design variable which is not local to the body k. The other terms, viz. dFki /dpj and
dAki /dpj (i=1:2) cannot be calculated locally on each body as these depend on the coupling between different
bodies in the system. Further, by solving the equations of motion (14-15) at any instant, the terms Fki (i=1:2)
are generated. Thus, having solved the equations of motion at any instant, the above equations(18-19) reduce
to the following form with the only unknowns at each body being the terms dFki /dpj and dAki /dpj (i=1:2).

dAk1
dpj

= Φk11
dFk1
dpj

+ Φk12
dFk2
dpj

+ Φk13 (21)

dAk2
dpj

= Φk21
dFk1
dpj

+ Φk22
dFk2
dpj

+ Φk23 (22)

Where Φk13 =
dζk11
dpj
Fk1 +

dζk12
dpj
Fk2 +

dζk13
dpj

(23)

And Φk13 =
dζk21
dpj
Fk1 +

dζk22
dpj
Fk2 +

dζk23
dpj

(24)

With Φkij =
dζkij
dpj

for i , j = 1:2 (25)

Thus, the equations(14-15) and equations(21-22) are in the same analytical form, albeit with different quan-
tities in the equations. Further, the equations(21-22) are obtained in the desired form only if the equations(14-
15) have already been solved. The procedure outlined in the next section is as follows: First the constraint
forces at each joint in the system are obtained by solving the dynamic equations of motion of the system; These
constraint forces are then substituted into equations(18-19) to generate equations(21-22); These are now the
sensitivity equations of each body that need to be solved. The corresponding equations for body k + 1 can be
expressed as

dAk+1
1

dpj
= Φk+1

11

dFk+1
1

dpj
+ Φk+1

12

dFk+1
2

dpj
+ Φk+1

13 (26)

dAk+1
2

dpj
= Φk+1

21

dFk+1
1

dpj
+ Φk+1

22

dFk+1
2

dpj
+ Φk+1

23 (27)

5



Two Handle Generalized Inertia
The relative acceleration between two joint locations on successive bodies k and k + 1 can be expressed in
terms of the joint motion map Hk/(k+1) and the generalized speeds at the joint uk/(k+1) as

Ak+1
1 −Ak2 = Hk/k+1u̇k/k+1 + Ḣk/k+1uk/k+1 (28)

Differentiating above equations with respect to parameter pj

dAk+1
1

dpj
− dAk2

dpj
= Hk/k+1 du̇

k/k+1

dpj
+
dHk/k+1

dpj
u̇k/k+1 +

dḢk/k+1uk/k+1

dpj︸ ︷︷ ︸
Locally Generated

(29)

⇒ dAk+1
1

dpj
− dAk2

dpj
= Hk/k+1 du̇

k/k+1

dpj
+ Π (30)

Where Π =
dHk/k+1

dpj
u̇k/k+1 +

dḢk/k+1uk/k+1

dpj
(31)

In the above equations, the terms indicated as locally generated depend only on the state sensitivities and
the locally generated terms. Hence this can be treated as a known. Further, from Newton’s second law

Fk2 = −Fk+1
1 ⇒ dFk2

dpj
= −dF

k+1
1

dpj
(32)

Substituting the expressions for dAk2/dpj and dAk+1
1 /dpj from equations(22-26) into equation(29)

respectively, and using the relation from equation(28) the following expressions can be arrived at

dAk+1
1

dpj
− dAk2

dpj
= Φk+1

11

dFk+1
1

dpj
+ Φk+1

12

dFk+1
2

dpj
+ Φk+1

13 − Φk21
dFk1
dpj
− Φk22

dFk2
dpj
− Φk23(33)

⇒ [Φk+1
11 + Φk22]

dFk+1
1

dpj
= [Φk21

dFk1
dpj
− Φk+1

12

dFk+1
2

dpj
+ Φk23 − Φk+1

13 +Hk/(k+1) du̇

dpj
+ Π] (34)

Premultiplying equation (34) by Dk/(k+1)T and calling on the orthogonality condition between Dk/(k+1) and
H k/(k+1)

Dk/(k+1)T [Φk+1
11 + Φk22]

dFk+1
1

dpj
= Dk/(k+1)T [Φk21

dFk1
dpj

+ Φk23 − Φk+1
13 − Φk+1

12

dFk+1
2

dpj

+Π] +Dk/(k+1)THk/(k+1)︸ ︷︷ ︸
0

du̇

dpj
(35)

From the definition of the orthogonal complement of joint motion subspace, the constraint force Fk+1
1 can be

expressed in terms of the measure numbers of the constraint torques and constraint forces as

Fk+1
1 = Dk/(k+1)Fk+1

1 ⇒ dFk+1
1

dpj
=
dDk/(k+1)

dpj
Fk+1

1 +Dk/(k+1) dFk+1
1

dpj
(36)

where the constraint force and constraint moment measure numbers f̃c
k+1+

and τ̃c
k+1+

, respectively, are
represented as

Fk+1
1 =

[
τ̃1
k+1

f̃1
k+1

]
(37)

Substituting this into above equation(35) an expression for dFk+1
1 /dpj can be arrived at as below

Dk/(k+1)T [Φk+1
11 + Φk22](

dDk/(k+1)

dpj
Fk+1+

+Dk/(k+1) dFk+1+

dpj
) =

Dk/(k+1)T [Φk21
dFk1
dpj

+ Φk23 − Φk+1
13 − Φk+1

12

dFk+1
2

dpj
+ Π] (38)

6



⇒ dFk+1
1

dpj
= −dF

k
2

dpj
= X [Φk21

dFk1
dpj

+ Φk23 − Φk+1
12

dFk+1
2

dpj
− Φk+1

13 ]− dDk/(k+1)

dpj
Fk+1+

(39)

where X = Dk/k+1([Dk/k+1]T [Φk22 + Φk+1
11 ]Dk/k+1)−1[Dk/k+1]T (40)

Substituting this expression for dFk+1
1 /dpj and dFk2 /dpj into equation(21-27) the following are

obtained

dAk1
dpj

= Φasm11

dFk1
dpj

+ Φasm12

dFk+1
2

dpj
+ Φasm13 (41)

dAk+1
2

dpj
= Φasm21

dFk1
dpj

+ Φasm22

dFk+1
2

dpj
+ Φasm23 (42)

In the above, the super-script asm indicates that bodies k and k + 1 have been coupled together to form a
resulting assembly asm. In substituting the expression for the derivative of the constraint load at the common
joint, the equations of the derivatives of the spatial accelerations of the two bodies are coupled together to form
the corresponding equations of the resulting assembly. In the resulting assembly, the two joints that connect the
assembly to its parent and child bodies (or assemblies) are Jk

+
and Jk+1− . The Φasmij are the inertia coupling

terms of the assembly of bodies k and k + 1 given by

Φasm11 = [Φk11 − Φk12XΦk21] (43)
Φasm12 = [Φk12XΦk+1

12 ] (44)
Φasm13 = [Φk13 − Φk12XΦk+1

13 ] (45)
Φasm21 = [Φk+1

21 XΦk21] (46)
Φasm22 = [Φk+1

22 − Φk+1
21 XΦk+1

12 ] (47)
Φasm23 = [Φk+1

23 + Φk+1
21 XΦk+1

23 ] (48)

Hierarchic Assembly-Disassembly
In the previous section a set of recursive formulae are derived that are used to coupled together the sensitivity
equations of two consecutive bodies to form the corresponding equations of the resulting assembly. In the as-
sociated manipulations, the two bodies are coupled together to form an assembly by expressing the derivative
of the intermediate (common) joint constraint load with respect to the design variable in terms of the corre-
sponding derivatives of the constraint forces at the other two handles. This process can now be repeated for
all bodies in the system where the equations of two successive bodies or assemblies are coupled together using
the recursive formulae to obtain the corresponding equations of the resulting assembly. This process works
hierarchically exploiting the same structure as that of a binary tree.

This process begins at the level of individual bodies of the system. Adjacent bodies of the system are
hierarchically assembled to construct a binary tree as shown in Figure (2). Individual bodies that make up
the system form the leaf nodes of the binary tree. The sensitivity equations of motion of a pair of bodies
are coupled together using the recursive set of formulae (43-48) to form the corresponding equations of the
resulting assembly. The resulting assembly now corresponds to a node of the next level in the binary tree.
Working along the binary tree in this hierarchic assembly processes, only a single assembly is left at the root
node of the binary tree. The root node corresponds to the two-handle representation of the entire articulated
system modelled as a single assembly. The sensitivity equations of this root node can be expressed as

dAsys1

dpj
= Φsys11

dFsys1

dpj
+ Φsys12

dFsys2

dpj
+ Φsys13 (49)

dAsys2

dpj
= Φsys21

dFsys1

dpj
+ Φsys22

dFsys2

dpj
+ Φsys23 (50)

Here the superscript sys is used to denote the whole system being represented as a single entity as the root
node of the binary tree. In this case, the handles 1 and 2 of this entity are the boundary joints of the articulated

7



system. Similarly the derivatives of the spatial constraint loads are those of the spatial constraint loads arising
from the interaction of the system with its boundaries. The above represent two sets of equations in terms
of four sets of unknowns i.e the derivatives of the spatial accelerations at the boundary joints dAsys1 /dpj ,
dAsys2 /dpj and the derivatives of the corresponding constraint loads and dFsys1 /dpj and dFsys2 /dpj .
Consider the three following scenarios that may arise for a system.

Free floating
This case corresponds to a system which is free floating, i.e. there are no kinematic joints connecting the system
to the inertial frame. In the absence of any kinematic joints at either boundary, there are no constraint forces
that can act on the system at the boundaries. In this case, in the equations(49-50) the constraint loads terms are
all zero and hence their derivatives are always zero. From this, the derivatives of the spatial accelerations can
be easily solved as

dAsys1

dpj
= Φsys13 and

dAsys2

dpj
= Φsys23 (51)

Anchored at one end by kinematic joint
In this case, the system is connected to the inertial frame by a kinematic joint at one end while the other end is
free floating. For such a system, there is no constraint load acting at the free end and in the equations(49-50)
the term dFsys2 /dpj = 0 and hence its derivative is also always zero. However at the other end, the system
will experience a constraint load because of the presence of the kinematic joint and its derivative needs to be
accounted for. The equations in this case reduce to

dAsys1

dpj
= Φsys11

dFsys1

dpj
+ Φsys13 (52)

dAsys2

dpj
= Φsys21

dFsys1

dpj
+ Φsys23 (53)

From the definition of the kinematic joint and its joint motion map, there exist the following kinematic
relations:

dAsys1

dpj
= H1 du̇

1

dpj
+
dH1

dpj
u̇1 +

d(Ḣ1u1)
dpj︸ ︷︷ ︸

Locally Generated

(54)

⇒ dAsys1

dpj
= H1 du̇

1

dpj
+ Πsys (55)

Where Πsys =
dH1

dpj
u̇1 +

d(Ḣ1u1)
dpj

(56)

Further, from the definition of the orthogonal complement of the joint motion map, the constraint load at
the handle can be expressed as

Fsys1 = D1Fsys1 ⇒ dFsys1

dpj
=
dD1

dpj
Fsys1 +D1 dFsys1

dpj
(57)

Substituting the above equations(54-57) into equations (52-53) the following is arrived at.

dAsys1

dpj
= H1 du̇

1

dpj
+ Πsys = Φsys11 [

dD1

dpj
Fsys1 +D1 dFsys1

dpj
] + Φsys13 (58)

⇒ H1 du̇
1

dpj
= Φsys11 [

dD1

dpj
Fsys1 +D1 dFsys1

dpj
] + Φsys13 −Πsys (59)

8



Using the orthogonality relation between H1 and D1, the derivative of the generalized speed at the joint as
well as that of the constraint load can be solved from equation(59) as

D1TH1︸ ︷︷ ︸
0

du̇1

dpj
= D1TΦsys11 D

1 dFsys1

dpj
+D1T [Φsys11

dD1

dpj
Fsys1 + Φsys13 −Πsys] (60)

⇒ dFsys1

dpj
= −D1[(D1)TΦsys11 D

1]−1(D1)T [Φsys11

dD1

dpj
Fsys1 + Φsys13 −Πsys] (61)

⇒ du1

dpj
= H1[(H1)T (Φsys11 )−1H1]−1(H1)T [Φsys11

dD1

dpj
Fsys1 + Φsys13 −Πsys] (62)

Substituting the above equations(61-62) into equations(52-53), the derivatives of the boundary spatial ac-
celerations dAk1/dpj and dAk1/dpj can be easily calculated.

Anchored at both ends by kinematic joints
In this case, the system is connected to the inertial frame by a kinematic joint at both ends and the system
reduces to a kinematically closed loop topology. For such a system, there are constraint load acting at both the
ends due to the kinematic joints. In this case the sensitivity equations for the system remains

dAasm1

dpj
= Φasm11

dFasm1

dpj
+ Φasm12

dFasm2

dpj
+ Φk13 (63)

dAasm2

dpj
= Φasm21

dFasm1

dpj
+ Φasm22

dFasm2

dpj
+ Φasm23 (64)

Similar to the previous situation, the following kinematic relations exist between the boundary joints and
their joint motion maps.

dAsys1

dpj
= H1 du̇

1

dpj
+
dH1

dpj
u̇1 +

d(Ḣ1u1)
dpj︸ ︷︷ ︸

Locally Generated

and
dAsys2

dpj
= H2 du̇

2

dpj
+
dH2

dpj
u̇2 +

d(Ḣ2u2)
dpj︸ ︷︷ ︸

Locally Generated

(65)

⇒ dAsys1

dpj
= H1 du̇

1

dpj
+ Πsys

1 and
dAsys2

dpj
= H2 du̇

2

dpj
+ Πsys

2 (66)

Where Πsys
1 =

dH1

dpj
u̇1 +

d(Ḣ1u1)
dpj

and Πsys
2 =

dH2

dpj
u̇2 +

d(Ḣ2u2)
dpj

(67)

Further, from the definition of the orthogonal complement of the joint motion map, the constraint load at
the handle can be expressed as

Fsys1 = D1Fsys1 ⇒ dFsys1

dpj
=
dD1

dpj
Fsys1 +D1 dFsys1

dpj
(68)

Fsys2 = D2Fsys2 ⇒ dFsys2

dpj
=
dD2

dpj
Fsys2 +D2 dFsys2

dpj
(69)

Substituting the equations (66) into equations (63-64) and absorbing the terms Πsys
i into the Φsysi3 term

(i = 1 : 2), one obtains,

H1 du̇
1

dpj
= Φasm11

dFasm1

dpj
+ Φasm12

dFasm2

dpj
+ Φasm13 (70)

H2 du̇
2

dpj
= Φasm21

dFasm1

dpj
+ Φasm22

dFasm2

dpj
+ Φasm23 (71)

9



H
ie

ra
rc

hi
c 

D
is

as
se

m
bl

y

H
ie

ra
rc

hi
c 

A
ss

em
bl

y

Binary Tree Representation of System Topology

1 2 3 4 5 6

Actual bodies of the system : Base leaves

1+2 3+4 5+6

Resulting Assemblies: Higher Level Nodes

1+2+3+4 5+6

Resulting Assemblies: Higher Level Nodes

1+2+3+4+5+6

Single Assembly : Root Node

Figure 2: The Hierarchic Assembly and Disassembly Process using Binary Tree Structure

Multiplying the above equations by (D1)T and (D2)T respectively, and calling on the orthogonality rela-
tion, the following is obtained.

0︷ ︸︸ ︷
(D1)TH1 du

dpj

1

= (D1)T [Φasm11

dFasm1

dpj
+ Φasm12

dFasm2

dpj
+ Φasm13 ] = 0 (72)

(D2)TH2︸ ︷︷ ︸
0

du2

dpj
= (D2)T [Φasm21

dFasm1

dpj
+ Φasm22

dFasm2

dpj
+ Φasm23 ] = 0 (73)

Substituting the expressions for the derivatives of the constraint loads from equation(68-69) into the equa-
tions (72-73) one obtains

(D1)TΦsys11 D
1 dFsys1

dpj
+ (D1)TΦsys12 D

2 dFsys2

dpj
+ (D2)T [Φsys11

dD1

dpj
Fsys1 + Φsys12

dD2

dpj
Fsys2 + Φsys13 ] = 0 (74)

(D2)TΦsys21 D
1 dFsys1

dpj
+ (D2)TΦsys22 D

2 dFsys2

dpj
+ (D2)T [Φsys21

dD1

dpj
Fsys1 + Φsys22

dD2

dpj
Fsys2 + Φsys23 ] = 0 (75)

In these equations, the terms (D1)TΦsys11 D
1 and (D2)TΦsys22 D

2 are symmetric positive definite (SPD) ma-
trices and there is no problem associated with their inversion. For notational convenience, the above equations
can be represented compactly in matrix form as[

χ11 χ12

χ21 χ22

] [
dFsys1 /dpj
dFsys2 /dpj

]
= −

[
χ13

χ23

]
(76)

where the corresponding χij can be derived from above equation. The matrix in (76) is also SPD with χ12 =
χT21. Having solved the above equations for the values of dFsys1 /dpj and dFsys2 /dpj , the corresponding
expression for dFsys1 /dpj and dFsys2 /dpj can be obtained from equation(68-69). At this point, the
derivatives of both constraint loads on the boundary joints are known. Consequently, the equation(63-64) of
the root node can be solved to obtain the derivatives of the spatial accelerations dAsys1 /dpj and dAsys1 /dpj
at the corresponding joints.

Thus in all three cases, the derivatives of the spatial accelerations and the constraint loads at the bound-
ary joints can be calculated. This initiates the hierarchic disassembly process. The derivatives of the spa-
tial accelerations and the constraint loads generated by solving the sensitivity equations of an assembly are

10



identically the values of the derivatives of the spatial accelerations and the constraint loads on one handle
on each of the two constituent assemblies. From these known quantities, the sensitivity equations of the
constituent assemblies can be solved to obtain the derivatives of the spatial accelerations and that of the
constraint loads at the connecting joint. For example, for a representative assembly made from Body k and
Body k+1, the sensitivity equations are given by equations (41-42). On solving these equations the quantities
dAk1/dpj , dAk+1

2 /dpj , dFk1 /dpj and dFk+1
2 /dpj are generated. These quantities are then substituted

into the sensitivity equations of the constituent sub-assemblies say for Body k and Body k+1. Thus knowing the
values of dAk1/dpj , dFk1 /dpj , equations (21-22) can be solved, while from dAk+1

2 /dpj and dFk+1
2 /dpj

equations (26-27) can also be solved. This process is repeated in a hierarchic disassembly of the binary tree
where the known derivatives of the boundary conditions are used to solve the sensitivity equations of the im-
mediate subassemblies, until derivatives of the spatial acceleration and constraint forces on all bodies in the
system are calculated.

The local analytical derivatives used in the algorithm are temporally invariant and exact. These are gener-
ated once during a preprocessing step and introduced into the algorithm as an input. This algorithm works in
six sweeps of the system, traversing the system topology like a binary tree. The first four sweeps are associated
with formulating and solving the equations of motion for the forward dynamics problem. The next two sweeps
are associated with the sensitivity analysis and correspond to the hierarchic assembly and the hierarchic dis-
assembly processes respectively. These last two sweeps may additionally be performed concurrently with the
final two sweeps of the forward dynamics formulation, if the concurrent formulation is preferred, where the
sensitivity sweeps lags behind the equations of motion by one level of the binary tree.

4 Conclusions
In this paper a new efficient method is presented for sensitivity analysis of multibody systems. The method
uses a direct differentiation approach and implements it in a divide and conquer scheme. The method maps the
topology of the system to a binary tree and generates the sensitivity information using several traverses of this
binary tree. The computational complexity of this algorithm is expected to be O(n) and O(log(n)) in serial
and parallel implementation, respectively. The method works in tandem with the forward dynamics problem.
Consequently there is no excessive data storage and no backward integration in this scheme. Further the limited
amount of associated differentiation is carried out analytically and exactly. Thus the method does not suffer
from numerical issues associated with perturbations in design variables. The method is robust and does not
suffer from numerical dependency issues associated with singular configurations. Implementation of sample
test cases to validate the method and an extended implementation for generalized topologies are current focus
of research of the authors.

Acknowledgement
This work was funded by the NSF NIRT Grant Number 0303902. The authors would like to thank the funding
agency for their support.

11



Lock Step Method
Two handle equations of motion can be written as :

Mk
0Ak0 = Sk0/k1Fk1 + Sk0/k2Fk2 + Fka (77)

And Sk0/k1 =
[
U (rk0/k1)×
0 U

]
Sk0/k2 =

[
U (rk0/k2)×
0 U

]
(78)

From the above equations, the expressions for spatial accelerations at the two joints can be expressed as

Ak1 = ζk11Fk1 + ζk12Fk2 + ζk13 (79)
Ak2 = ζk21Fk1 + ζk22Fk2 + ζk23 (80)

In the above, the matrices ζk11 and ζk22 are Symmetric Positive Definite (SPD) and the matrices ζk12 and ζk21 are
symmetric transposes of each other. The matrices ζk13 and ζk23 include the terms that are state dependent (for
e.g. the active forces) and can be calculated independently on each body. Similar expressions for body k + 1
can be written as

Ak+1
1 = ζk+1

11 F
k+1
1 + ζk+1

12 F
k+1
2 + ζk+1

13 (81)
Ak+1

2 = ζk+1
21 F

k+1
1 + ζk+1

22 F
k+1
2 + ζk+1

23 (82)

Let pj represent any design variable with respect to which the sensitivity of the dynamic system is to be
calculated. For a dynamic system, pj may be a mass or inertia value, geometric constant such as lengths, radii,
or active forces among others. Differentiating equations(79-80) with respect to pj , the following equations are
arrived at.

dAk1
dpj

=
dζk11
dpj
Fk1 + ζk11

dFk1
dpj

+
dζk12
dpj
Fk2 + ζk12

dFk2
dpj

+
dζk13
dpj

(83)

dAk2
dpj

=
dζk21
dpj
Fk1 + ζk21

dFk1
dpj

+
dζk22
dpj
Fk2 + ζk22

dFk2
dpj

+
dζk23
dpj

(84)

With
d(Mk

0)−1

dpj
= −(Mk

0)−1 dMk
0

dpj
(Mk

0)−1 (85)

Similarly for body k + 1 the corresponding equations are

dAk+1
1

dpj
=

dζk+1
11

dpj
Fk+1

1 + ζk+1
11

dFk+1
1

dpj
+
dζk+1

12

dpj
Fk+1

2 + ζk+1
12

dFk+1
2

dpj
+
dζk+1

13

dpj
(86)

dAk+1
2

dpj
=

dζk+1
21

dpj
Fk+1

1 + ζk+1
21

dFk+1
1

dpj
+
dζk+1

22

dpj
Fk+1

2 + ζk+1
22

dFk+1
2

dpj
+
dζk+1

23

dpj
(87)

(88)

Subtract equation 80 from 81 and the follow the common method of DCA as in my previous papers to
generate an expression for the intermediate joint constraint force as

F k+1
1 = Ŵ ζ21

kF k1 − Ŵ ζ12
k+1F k+1

2 + Ŷ (89)

where Ŵ = Dk/(k+1)X̂−1Dk/(k+1)T (90)
and Ŷ = Ŵ [ζ23k − ζ13k+1 + Ḣk/(k+1)u] (91)

Substitute the above equation into equations 80 and 81 and then initiate the same process for the hierarchic
assembly of sensitivity equations as outlined in the paper. In this case the resulting equations would look like
as follows with the constraint force at the boundary joints explicitly present as opposed to being treated as
known quantities.

dAk1
dpj

= Ψk:k+1
11 F k1 + ζk:k+1

11

dF k1
dpj

+ Ψk:k+1
12 F k+1

2 + ζk:k+1
12

dF k+1
2

dpj
+
dΨk:k+1

13

dpj
(92)

dAk+1
2

dpj
= Ψk:k+1

21 F k1 + ζk:k+1
21

dF k1
dpj

+ Ψk:k+1
22 F k+1

2 + ζk:k+1
22

dF k+1
2

dpj
+
dΨk:k+1

23

dpj
(93)

(94)

12



In the above the terms Ψ now have new definitions and contain the inertia coupling terms originating from the
expression of the intermediate joint constraint force. These are the new sensitivity equations and not the ones
we had used earlier in the paper. These equations allow us the calculate the sensitivities as well as the equations
of motion concurrently. The assembly process is apparent from the above and the disassembly is now going
to follow in tandem by first solving the equations of motion, generating the constraint forces and substituting
the same in the new equations above. This way there are no 6 sweeps but 4 and the sensitivities are generated
in tandem with the equations of motion. The only question that arises is whether the matrices are still SPD?
My understanding is that it depends primarily on the design variable and in most cases it should still be SPD
unless we choose some weird design parameter. Note that these set of equations allow us the work concurrently
and is not really a lock step process in terms of traversal of the binary tree. These equations allow us to solve
for the equations of motion and sensitivity equations in the order mentioned for an assembly and then move
simultaneously to the next level in the binary tree. Thus although the sensitivity solution follows the solution of
the equations of motion (and can thus be thought of as lock step), the process does not require the two solutions
to lag by one or more levels of the binary tree. I think its best if Kishor can implement this quickly for the
double pendulum problem and verify. Should not take more than a couple of days.

References
[1] D. Bestle and P. Eberhard. Analysing and optimizing multibody systems. Structures and Machines,

20:67–92, 1992.

[2] K. S. Anderson and Y. H. Hsu. Low operational order analytic sensitivity analysis for tree-type multibody
dynamic systems. Journal of Guidance, Control and Dynamics, 24(6):1133–1143, Nov.–Dec. 2001.

[3] C. H. Bischof. On the automatic differentiation of computer programs and an application to multibody
systems. In Proceedings of the IUTAM Symposium on Optimization of Mechanical Systems, pages 41–48,
1996.

[4] D. Bestle and J. Seybold. Sensativity analysiz of constrained optimization in dynamic systems. Archive
of Applied Mechanics, 62:181–190, 1992.

[5] P. Eberhard. Adjoint variable method for sensitivity analysis of multibody systems interpreted as a con-
tinuous, hybrid form of automatic differentiation. In Proceedings of the 2nd International Workshop on
Computational Differentiation, pages 319–328, Santa Fe, NM, USA, Feb 12-14 1996.

[6] C. O. Chang and P. E. Nikravesh. Optimal design of mechanical systems with constaint violation stabi-
lization method. Journal of Mechanisms, Transmissions, and Automation in Design, 107:493–498, Dec.
1985.

[7] T. Tak. A Recursive Approach to Design Sensitivity Analysis of Multibody Systems Using Direct Differ-
entiation. PhD thesis, University of Iowa, Iowa City, 1990.

[8] A. Jain and G. Rodrigues. Sensitivity analysis of multibody systems using spatial operators. In Proceed-
ings of the International Conference on Method and Models in Automation and Robotics (MMAR 2000),
Miedzyzdroje, Poland, Aug. 28-31 2000.

[9] R. Serban and E. J. Haug. Kinematic and kinetics derivatives for multibody system analyses. Mechanics
of Structures and Machines, 26(2):145–173, 1998.

[10] J.M. Pagalday, I. Aranburu, A. Avello, and J.G. De Jalon. Multibody dynamics optimization by direct
differentiation methods using object oriented programming. In Proceedings of the IUTAM Symposium on
Optimization of Mechanical Systems, pages 213–220, Stuttgart, Germany, March 26-31 1995.

[11] L.F.P. Etman. Optimization of multibody systems using approximation concepts. PhD thesis, Technische
Universiteit Eindhoven, The Netherlands., 1997.

[12] J.M.P. Dias and M.S. Pereira. Sensitivity analysis of rigidflexible multibody systems. Multibody System
Dynamics, 1(3):303–322, 1997.

13



[13] K. S. Anderson and Y. H. Hsu. ‘Order-(n+m)’ direct differentiation determination of design sensitivity for
constrained multibody dynamic systems. Structural and Multidisciplinary Optimization, 26(3–4):171–
182, Feb. 2004.

[14] R. Featherstone. A divide-and-conquer articulated body algorithm for parallel O(log(n)) calculation of
rigid body dynamics. Part 1: Basic algorithm. International Journal of Robotics Research, 18(9):867–
875, Sep. 1999.

[15] R. Mukherjee and K. S. Anderson. An orthogonal complement based divide-and-conquer algorithm for
constrained multibody systems. Nonlinear Dynamics, 2005. Accepted for Publication.

[16] Kim S. S. and VanderPloeg M. J. Generalized and efficient method for dynamic analysis of mechani-
cal systems using velocity transforms. Journal of Mechanism, Transmissions, and Automation Design,
108(2):176–182, 1986.

[17] Nikravesh P. E. Systematic reduction of multibody equations to a minimal set. International Journal of
Non-Linear Mechanics, 25(2-3):143–151, 1990.

14


